redis工作原理 redis工作原理详解
一篇好的文章需要好好的打磨,你现在浏览的文章是一篇关于redis工作原理 redis工作原理详解的文章,本文对文章redis工作原理 redis工作原理详解好好的分析和解答,希望你能喜欢,只有你喜欢的内容存在,只有你来光临,我们才能继续前行。

redis是怎么实现的
第一:Redis 是什么?
Redis是基于内存、可持久化的日志型、Key-Value数据库 高性能存储系统,并提供多种语言的API.
第二:出现背景
数据结构(Data Structure)需求越来越多, 但memcache中没有, 影响开发效率
性能需求, 随着读操作的量的上升需要解决,经历的过程有:
数据库读写分离(M/S)–>数据库使用多个Slave–>增加Cache (memcache)–>转到Redis
解决写的问题:
水平拆分,对表的拆分,将有的用户放在这个表,有的用户放在另外一个表;
可靠性需求
Cache的"雪崩"问题让人纠结
Cache面临着快速恢复的挑战
开发成本需求
Cache和DB的一致性维护成本越来越高(先清理DB, 再清理缓存, 不行啊, 太慢了!)
开发需要跟上不断涌入的产品需求
硬件成本最贵的就是数据库层面的机器,基本上比前端的机器要贵几倍,主要是IO密集型,很耗硬件;
维护性复杂
一致性维护成本越来越高;
BerkeleyDB使用B树,会一直写新的,内部不会有文件重新组织;这样会导致文件越来越大;大的时候需要进行文件归档,归档的操作要定期做;
这样,就需要有一定的down time;
基于以上考虑, 选择了Redis
第三:Redis 在新浪微博中的应用
Redis简介
1. 支持5种数据结构
支持strings, hashes, lists, sets, sorted sets
string是很好的存储方式,用来做计数存储。sets用于建立索引库非常棒;
2. K-V 存储 vs K-V 缓存
新浪微博目前使用的98%都是持久化的应用,2%的是缓存,用到了600+服务器
Redis中持久化的应用和非持久化的方式不会差别很大:
非持久化的为8-9万tps,那么持久化在7-8万tps左右;
当使用持久化时,需要考虑到持久化和写性能的配比,也就是要考虑redis使用的内存大小和硬盘写的速率的比例计算;
3. 社区活跃
Redis目前有3万多行代码, 代码写的精简,有很多巧妙的实现,作者有技术洁癖
Redis的社区活跃度很高,这是衡量开源软件质量的重要指标,开源软件的初期一般都没有商业技术服务支持,如果没有活跃社区做支撑,一旦发生问题都无处求救;
Redis基本原理
redis持久化(aof) append online file:
写log(aof), 到一定程度再和内存合并. 追加再追加, 顺序写磁盘, 对性能影响非常小
1. 单实例单进程
Redis使用的是单进程,所以在配置时,一个实例只会用到一个CPU;
在配置时,如果需要让CPU使用率最大化,可以配置Redis实例数对应CPU数, Redis实例数对应端口数(8核Cpu, 8个实例, 8个端口), 以提高并发:
单机测试时, 单条数据在200字节, 测试的结果为8~9万tps;
2. Replication
过程: 数据写到master–>master存储到slave的rdb中–>slave加载rdb到内存。
存储点(save point): 当网络中断了, 连上之后, 继续传.
Master-slave下第一次同步是全传,后面是增量同步;、
3. 数据一致性
长期运行后多个结点之间存在不一致的可能性;
开发两个工具程序:
1.对于数据量大的数据,会周期性的全量检查;
2.实时的检查增量数据,是否具有一致性;
对于主库未及时同步从库导致的不一致,称之为延时问题;
对于一致性要求不是那么严格的场景,我们只需要要保证最终一致性即可;
对于延时问题,需要根据业务场景特点分析,从应用层面增加策略来解决这个问题;
例如:
1.新注册的用户,必须先查询主库;
2.注册成功之后,需要等待3s之后跳转,后台此时就是在做数据同步。
第四:分布式缓存的架构设计
1.架构设计
2.分布式实现
通过key做一致性哈希,实现key对应redis结点的分布。
一致性哈希的实现:
lhash值计算:通过支持MD5与MurmurHash两种计算方式,默认是采用MurmurHash,高效的hash计算.
l一致性的实现:通过java的TreeMap来模拟环状结构,实现均匀分布
3.client的选择
对于jedis修改的主要是分区模块的修改,使其支持了跟据BufferKey进行分区,跟据不同的redis结点信息,可以初始化不同的 ShardInfo,同时也修改了JedisPool的底层实现,使其连接pool池支持跟据key,value的构造方法,跟据不同 ShardInfos,创建不同的jedis连接客户端,达到分区的效果,供应用层调用
4.模块的说明
l脏数据处理模块,处理失败执行的缓存操作。
l屏蔽监控模块,对于jedis操作的异常监控,当某结点出现异常可控制redis结点的切除等操作。
整个分布式模块通过hornetq,来切除异常redis结点。对于新结点的增加,也可以通过reload方法实现增加。(此模块对于新增结点也可以很方便实现)
对于以上分布式架构的实现满足了项目的需求。另外使用中对于一些比较重要用途的缓存数据可以单独设置一些redis结点,设定特定的优先级。另外对 于缓存接口的设计,也可以跟据需求,实现基本接口与一些特殊逻辑接口。对于cas相关操作,以及一些事物操作可以通过其watch机制来实现。
声明:所有博客服务于分布式框架,作为框架的技术支持及说明,框架面向企业,是大型互联网分布式企业架构,后期会介绍linux上部署高可用集群项目。
Redis的五种数据结构及其底层实现原理
redis的字符串类型是由一种叫做简单动态字符串(SDS)的数据类型来实现
SDC和C语言字符串的区别:
1:SDS保存了字符串的长度,而C语言不保存,只能遍历找到第一个\0的结束符才能确定字符串的长度
2:修改SDS,会检查空间是否足够,不足会先扩展空间,防止缓冲区溢出,C字符串不会检查
3:SDS的预分配空间机制,可以减少为字符串重新分配空间的次数
备注:重新分配空间方式,小于1M的数据 翻倍+1,例如:13K+13K+1,如果大于1M,每次多分配1M,例如:10M+1M+1,如果字符串变短,并不会立即缩短,而是采用惰性空间释放,有专门的API可以释放多余空间
hash结构里其实是一个字典,有许多的键值对
redis的哈希表是一个dictht结构体:
hash算法:
当要将一个新的键值对添加到字典里面时, 程序需要先根据键值对的键计算出哈希值和索引值, 然后再根据索引值, 将包含新键值对的哈希表节点放到哈希表数组的指定索引上面。
hash冲突解决方式:链表法,后入的放到最前面
rehash:
键值数据量变动时,时为了让哈希表的负载因子(load factor)维持在一个合理的范围之内, 当哈希表保存的键值对数量太多或者太少时, 程序需要对哈希表的大小进行相应的扩展或者收缩。
如果是扩充,新数组的空间大小为 大于2*used的2的n次方,比如:used=5,则去大于10的第一个2的n次方,为16
如果是缩小,新数组的空间大小为第一个不大于used的2的n次方,比如:used=5,则新大小为4
redis的list列表是使用双向链表来实现的
···
typedef struct listNode {
struct listNode * pre; //前置节点
struct listNode * next; //后置节点
void * value; //节点的值
}
typedef struct list {
listNode *head; //表头节点
listNodetail; //表尾节点
unsigned long len; //链表所包含的节点数量
void (dup) (voidptr); //节点值赋值函数 这里有问题
void (free) (voidptr); //节点值释放函数
int (match) (void *ptr, void *key) //节点值对比函数
}
···
1:有序集合的底层实现之一是跳表, 除此之外跳表它在 Redis 中没有其他应用。
2:整数集合(intset)是集合键的底层实现之一: 当一个集合只包含整数值元素, 并且这个集合的元素数量不多时, Redis 就会使用整数集合作为集合键的底层实现。
3:数据少是,使用ziplist(压缩列表),占用连续内存,每项元素都是(数据+score)的方式连续存储,按照score从小到大排序。ziplist为了节省内存,每个元素占用的空间可以不同,对于大数据(long long),就多用一些字节存储,而对于小的数据(short),就少用一些字节来存储。因此查找的时候需要按顺序遍历。ziplist省内存但是查找效率低。
无序集合可以用整数集合(intset)或者字典实现
Redis的5.0版本中,放出一个新的数据结构Stream。其实也是一个队列,没一个不同的key对应的是不同的队列,没个队列的元素,也就是消息,都有一个msgid,并且需要保证msgid是严格递增的。在Stream当中,消息是默认持久化的,即便是Redis重启,也能够读取到信息。
Stream的多播,与其它队列系统相似,对不同的消费者,也有消费者Group这样的概念,不同的消费组,可以消费通一个消息,对于不同的消费组,都维护一个Idx下标,表示这一个消费群组费到了哪里,每次进行消费,都会更新一下这个下标,往后面一位进行偏移。
跳跃表是一种有序数据结构,它通过在每个节点中维持多个指向其它节点的指针,从而大道快速访问节点的目的,具有以下性质:
1:有很多层结构组成
2:每一层都是一个有序的链表,排列顺序为由高到低,都至少包含两个链表节点,分别是前面的head节点和后面的nil节点
3:最底层的链表包含了所有的元素
4:如果一个元素出现在某一层的链表中,那么在该层之下的链表也全部都会出现
5:链表中的每个节点都包含两个指针,一个指向同一层的下一个链表节点,另一个指向下一层的通一个链表节点
多个跳跃表节点构成一个跳跃表
1:搜索,从最高层的链表节点开始,如果比当前节点要大和比当前层的下一个节点要小,那么则往下找,也及时和当前层的下一层的节点下一个节点
2:插入,首先确定插入的层数,有一种方法是抛一个硬币,如果是正面就累加,直到遇到反面为止,最后记录正面的次数作为插入的层数,当确定插入的层数K后,则需要将新元素插入从底层到K层
3:删除,在各个层中找到包含指定值得节点,然后将节点从链表中删除即可,如果删除以后只剩下头尾两个节点,则删除这一层。
整数集合是Redis用于保存整数值集合的抽象数据类型,它可以保存int16_t、int32_t、int64_t的整数值,并且保证集合中不会出现重复元素。
整数集合的每个元素都是contents数组的一个数据项,他们按照从小到大的顺序排列,并且不包含任何重复项。
length属性记录了contents数组的大小。
需要注意的是虽然contents数组声明为int8_t类型,但是实际上contents数组并不保存任何int8_t类型的值,其真正类型由encoding来决定。
压缩列表(ziplist)是Redis为了节省内存而开发的,是由一系列特殊编码的连续内存块组成的顺序型数据结构,一个压缩列表可以包含任意多个节点(entry),每个节点可以保存一个字节数组或一个整数值。
压缩列表的原理:压缩列表并不是对数据利用某种算法进行压缩的,而是将数据按照一定规则编码在一块连续的内存区域,目的是节省内存。
redis缓存原理
redis缓存原理是sql语句时key值,查询结果resultSet是value,当同一个查询语句访问时(select * from t_product),只要曾经查询过,调用缓存直接返回resultSet,节省了数据库读取磁盘数据的时间。
redis的存储分为内存存储、磁盘存储和log文件三部分,配置文件中有三个参数对其进行配置。
save seconds updates,save配置,指出在多长时间内,有多少次更新操作,就将数据同步到数据文件。这个可以多个条件配合,比如默认配置文件中的设置,就设置了三个条件。
appendonly yes/no ,appendonly配置,指出是否在每次更新操作后进行日志记录,如果不开启,可能会在断电时导致一段时间内的数据丢失。因为redis本身同步数据文件是按上面的save条件来同步的,所以有的数据会在一段时间内只存在于内存中。
扩展资料
redis的出现,很大程度补偿了memcached这类key/value存储的不足,在部 分场合可以对关系数据库起到很好的补充作用。它提供了Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便。
Redis支持主从同步。数据可以从主服务器向任意数量的从服务器上同步,从服务器可以是关联其他从服务器的主服务器。这使得Redis可执行单层树复制。
存盘可以有意无意的对数据进行写操作。由于完全实现了发布/订阅机制,使得从数据库在任何地方同步树时,可订阅一个频道并接收主服务器完整的消息发布记录。同步对读取操作的可扩展性和数据冗余很有帮助。
redis的官网地址,redis.io。(域名后缀io属于国家域名,是british Indian Ocean territory,即英属印度洋领地)
以上内容是小编精心整理的关于redis工作原理 redis工作原理详解的精彩内容,好的文章需要你的分享,喜欢redis工作原理 redis工作原理详解这篇精彩文章的,请您经常光顾吧!
下一篇:更多农历